

«Огнеупоры и Теплоизоляция»
Научно-Внедренческая Фирма
Общество с ограниченной ответственностью
Refractories & High Temperature Insulation
Innovation and Research Limited Liability Company

Вермикулитовые плиты VIP предназначены для работы в условиях с температурой до 1250°С.

Плиты VIP представляют собой высокоплотные изделия, характеризующиеся хорошими изоляционными свойствами и очень высокой механической прочностью.

Выпускаются плиты VIP четырех типов:

- **VIP-900** с плотностью 900 кг/м³
- VIP-12 с плотностью 1200 кг/м³
- VIP-12 HS с плотностью 1225 кг/м³
- VIP-12 HT с плотностью 1250 кг/м³

Каждый тип плит VIP имеет специфические прочностные, тепловые и другие характеристики.

Плиты VIP полностью соответствуют критериям Резолюции A.472(XII) IMO и в соответствии с ней классифицируются как негорючие и не выделяющие вредных газов.

ПРИМЕНЕНИЕ

Плиты VIP применяются как для футеровки, так и для теплоизоляции всех огнеупорных конструкций. Они не будут разлагаться даже при непосредственном воздействии пламени. Ввиду стойкости плит VIP к монооксиду углерода СО и углеводородам их можно использовать в печах с восстановительной атмосферой. Они практически свободны от серы, и, следовательно, являются идеальным выбором для печей, в которых производят сплавы никеля или другие критичные к присутствию серы сплавы. Плиты VIP обладают большой износостойкостью.

Сочетание высокой прочности с низкой теплопроводностью и высокой стойкостью к тепловым ударам и износу делает плиты VIP-12 применимыми в сталеразливочных ковшах и промежуточных ковшах МНЛЗ в качестве резервной изоляции.

Плиты VIP-12 специально разрабатывались как стойкие к криолиту вермикулитовые плиты для промежуточной теплоизоляции в катодах электролизеров, которая устанавливается между углеродными блоками и более уязвимыми к воздействию криолитглиноземного расплава низлежащими материалами. Плиты VIP-12 останавливают проникающие в катод электролизера вещества, так как в результате химических реакций легкоплавкая смесь фторида натрия и фторида алюминия преобразуется твердую смесь фторида магния, силиката натрия и силиката алюминия (нефелин). Таким образом, теплоизолирующие плиты VIP-12 выполняют еще и функции сухих барьерных смесей.

СТАНДАРТНЫЕ РАЗМЕРЫ ПЛИТ VIP

	Длина х Ширина	Толщина		
VIP-900	1000 х 610 мм	20 – 75 мм		
	1260 х 1000 мм	20 – 55 мм		
VIP-12	1000 х 305 мм	20 – 60 мм		
	610 х 305 мм	20 – 85 мм		
	610 х 330 мм	20 – 80 мм		
	300 х 115 мм			
VIP-12 HS	480 х 300 мм	12.7 – 60 мм		
	610 х 305 мм			
	300 х 115 мм			
VIP-12 HT	480 х 300 мм	12.7 – 60 мм		
	610 х 305 мм			

По спецификации заказчика могут быть изготовлены плиты с другими размерами, а состав изделий позволяет легко обрабатывать их обычными деревообрабатывающими инструментами.

ДОПУСКИ НА РАЗМЕРЫ

по длине и ширине	±2,5 мм;
по толщине	.±1,0 мм

Refractories & High Temperature Insulation

«Огнеупоры и Теплоизоляция»
Научно-Внедренческая Фирма
Общество с ограниченной ответственностью
Refractories & High Temperature Insulation
Innovation and Research Limited Liability Company

ВЕРМИКУЛИТОВЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ ПЛИТЫ VIP

для огнеупорной футеровки и теплоизоляции с температурой до 1250°C

Характеристики			VIP-12		VIP-12 HT
		VIP-900		VIP-12 HS	
Максимальная рабочая температура	°C	1150	1100	1050	1250
Объемная плотность	кг/м ³	900	1200	1225	1400
Предел прочности на сжатие (DS/EN ISO 8895_2006)	МПа	6.3	9.5	22.0	14.0
Предел прочности на изгиб (EN 993-6; 1995)	МПа	2.1	2.5	_	2.5
Остаточное изменение длины после нагрева (EN 1094-6; 1999) 12 ч. при 1000°С 12 ч. при 1100°С 12 ч. при 1150°С	%	- 1.2 -	1.0	0.9	- - 1.0
Общая пористость (EN 1094-4:1995)	%	57	56	55	50
Удельная теплоемкость	кДж/(кг×К)	1.14	1.0	1.0	-
Линейный коэффициент термического расширения (BS 1902, 5.3; 1990) в интервале 20-750°C	×10 ⁻⁶ K ⁻¹	8.9	10.0	17.8	8.9
Термическая стойкость (EN 993-11:1999)	Теплосмен	> 30	> 30	> 30	> 30
Огнеупорность по пирометрическому конусу (ASTM C24-09 Конус)	°C	-	1330	1300	-
Коэффициент теплопроводности (ASTM C-182):					
при 200°C	$BT/(M \times K)$	0.18	0.25	0.20	0.32
при 400°C		0.19	0.27	0.22	0.31
при 600°C		0.20	0.29	0.24	0.31
при 800°C		0.23	0.30	0.27	0.34
при 1000°C		0.26	-	0.30	0.37
Типичный химический состав:	%				
	SiO ₂	44.0	52.0	48.0	45.0
	TiO ₂	0.7	1.6	1.1	0.4
	Fe_2O_3	7.1	3.8	3.5	6.9
	AI_2O_3	6.3	23.0	27.0	4.3
	MgO	25.9	8.9	7.4	32.6
	CaO	3.0	1.5	4.7	1.4
	Na ₂ O	0.1	0.2	0.3	0.1
	K ₂ O	6.9	5.6	6.2	6.1
Потери при прокаливании (1025°C)	LOI	4.0	3.0	2.4	2.8
Цвет					Песочный
Код ТН ВЭД					6806.90.00

Приведенные в таблице данные являются средними результатами испытаний, проводимых согласно стандартным методам испытаний теплоизоляционных и огнеупорных материалов.

